E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Pentest-Report Ente Platform, Cryptography & Infra 10.2025
Cure53, Dr.-Ing. M. Heiderich, Y. Yuan, Dr. N. Kobeissi, S. Rajbhar

Index
Introduction

Scope
Identified Vulnerabilities
ENT-02-001 WP2: Weak replay attack protection on WebAuthn (Medium)
ENT-02-002 WP3: Cloudflare bypass via Cloudflare Spectrum (Medium)
ENT-02-003 WP2: Client IP spoofing for self-hosted instances (Medium)
ENT-02-005 WP3: Email boundary injection in report abuse endpoint (Medium)
ENT-02-007 OOS: Full read SSRF in Uploader Worker (High)
ENT-02-008 WP2: TOTP authentication vulnerable to code reuse (Low)
ENT-02-012 WP3: Stored XSS on files.ente.io allows phishing ATO (High)
ENT-02-013 WP3: Storage limit bypass via reuploading (Medium)
ENT-02-014 OOS: XSS on accounts.ente.io via Passkey recovery (High)
ENT-02-015 WP2: SRP fake session mechanism enables user enum (High)
Miscellaneous Issues
ENT-02-004 WP2: OTTs for specific operations valid for all (Info)
ENT-02-006 WP2: Unexploitable email header injection (High)
ENT-02-009 OOS: Potential RCE in desktop application (Critical)
ENT-02-010 WP2: Non-constant-time comparison for Passkey recovery (Low)
ENT-02-011 WP2: Disabling 2FA does not require additional auth (Info)
Conclusions

Cure53, Berlin - Oct 30, 25 1/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Introduction

“Ente is a service that provides a fully open source, end-to-end encrypted platform for you to
store your data in the cloud without needing to trust the service provider.”

From https://github.com/ente-io/ente/?tab=readme-ov-file#ente

This report (ID ENT-02) has been compiled by Cure53 to verify the results of a penetration
test and source code audit targeting the Ente platform, server cryptography, underlying
Compute Instances infrastructure, and selected feature sets.

For background information, the project was commissioned by Ente in August 2025 and
conducted soon thereafter in CW42 October 2025. The scope examinations comprised a
total of fourteen evaluation days, which were dispersed to a four-person review team.

The aforementioned focus elements were placed into four distinct Work Packages (WPs) for
test execution efficiency. These were defined as follows:

* WP1: White-box code audits & reviews against ente server crypto functions
* WP2: White-box pen.-tests & code audits against ente authn & authz, ACL

* WP3: White-box pen.-tests & code audits against ente specific functionalities
* WP4: Gray-box pen.-tests & assessments against ente compute instances

Certain aspects of the Ente platform have already been previously investigated by Cure53.
Specifically, the crypto designs were vetted in March 2023; the outcomes of which have
been documented in the report entitled ENT-01.

The pentesting methodology deemed most appropriate for this exercise was a dual white-
and gray-box approach. To fulfill these requirements, the internal maintainers granted the
Cure53 analysts access to sources, documentation, and other assorted assets. Preliminary
initiatives were finalized in CW41 2025 to ensure maximal and unimpeded coverage.

A dedicated Discord server was established for cross-organization communications. All
involved personnel from both parties were invited to join this platform in advance. The
collaborative process was handled efficiently, with minimal queries required and no
significant blockers encountered.

Cure53 kept the in-house team in the loop with regard to the progress of the audit and

interesting findings, furnishing frequent status updates when required. Live reporting was
also requested and conducted via the shared Discord server.

Cure53, Berlin - Oct 30, 25 2/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

The Cure53 consultants achieved satisfactory analysis depth over the WP1-WP4 scope
features, detecting a total of fifteen negative security implementations (subsequently
provided in ticket format). In terms of their categorization, ten were filed as security
vulnerabilities and five pertained to general weaknesses with lower exploitation potential.

In summary, the Ente platform is affected by a variety of security vulnerabilities across its
authentication processes, email management, file handling, and infrastructure elements.
Despite the strong foundational elements, such as robust server-side ACL enforcement and
generally sound coding practices, multiple major flaws were uncovered that necessitate
urgent remediation, including the uncovered XSS pitfalls and fake session mechanism,
which expose the platform to unnecessary risk.

Nonetheless, the Ente team's proactive responsiveness in swiftly rremediating twelve of the
fifteen issues, including all Critical and High severity issues, is praiseworthy. These efforts,
in tandem with the astutely architected system, demonstrates their commitment to security
and should be commended. Notably, some of the located pitfalls were classified as out-of-
scope, such as the desktop client RCE. Given their presence, a dedicated review of these
components is advised for future engagements.

The subsequent sections of this report will detail the scope, test setup, and available testing
resources. The report will then present all findings in chronological order, beginning with
identified vulnerabilities and subsequently addressing general weaknesses. Each finding will
include a technical description, a proof of concept (PoC) where applicable, and mitigation or
remediation advice. Finally, the report will conclude with a summary of Cure53's overall
impressions and an assessment of the perceived security posture of the Ente platform and
respective components.

Cure53, Berlin - Oct 30, 25 3/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Scope

* Pen.-tests & code audits against Ente platform, cryptography & infra
o WP1: White-box code audits & reviews against ente server crypto functions
= Source repository URL:
» https://github.com/ente-io/ente
= Folder server only:
* Branch: main
* Commit hash: b6¢35924fe7b3c4b8792144eff5b0ed235f58411
o WP2: White-box pen.-tests & code audits against ente authn & authz, ACL
= Environment URL:
* https://api.ente.io/
= Source code:
« See WP1
o WP3: White-box pen.-tests & code audits against ente specific functionalities
= Source code:
« See WP1
= Focus should be placed on the following
= Authentication & Authorization
* Token Validation: /pkg/middleware/auth.go:33-90
* File Access Control: /pkg/controller/access/file.go:34-68
» Collection Access: /pkg/controller/access/collection.go:27-59
= File Operations
* File Creation: /pkg/controller/file.go:118-201
» File Update: /pkg/controller/file.go:204-291
* File Download: /pkg/controller/file.g0:321-336
* File Trash: /pkg/controller/file.go:439-463
* File Copy: /pkg/controller/file_copy/file_copy.go:64-167
= Collection Sharing
» Share Collection: /pkg/controller/collections/share.go:18-60
» Public Link Creation: /pkg/controller/collections/share.go:184-207
» Join via Link: /pkg/controller/collections/share.go:61-107
= Public Access
* Collection Link Auth: /pkg/middleware/collection_link.go:51-125
* File Link Auth: /pkg/middlewareffile_link.go:38-114
o WP4: Gray-box pen.-tests & assessments against ente compute instances
= Alist of IPs in scope has been shared with Cure53
o Test-supporting material was shared with Cure53
o All relevant sources were shared with Cure53

Cure53, Berlin - Oct 30, 25 4/20

https://github.com/ente-io/ente
https://api.ente.io/
https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., ENT-02-001) to
facilitate any future follow-up correspondence.

ENT-02-001 WP2: Weak replay attack protection on WebAuthn ()

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Cure53 confirmed that Ente’s current WebAuthn authentication implementation fails to
prevent replay attacks outside of the 2-minute timeout limit. An attacker can intercept a
WebAuthn finish request and replay it to create an arbitrary amount of sessions within the
aforementioned time frame.

Steps to reproduce:
1. Set up an Ente account with Webauthn (Passkeys) enabled.
2. Attempt to log in and intercept the request to
https://api.ente.io/users/two-factor/passkeys/finish?sessionID= [...]
3. Replay the request.
4. Verify that each replayed request generates a new session and accompanying new
session email.

To resolve this vulnerability, Cure53 recommends either deleting the challenge upon
operation completion or marking the challenge as used in the database. According to the
Web Authentication specification®, the Relying Party should store the generated challenges
“temporarily until the operation is complete.”

ENT-02-002 WP3: Cloudflare bypass via Cloudflare Spectrum (.)

Client Note: Ente believes this to be an Info/Low priority issue, since (a) Ente is on an
Enterprise Cloudflare account and uses Cloudflare’s Advanced “adaptive” DDoS protection,
and (b) Ente no longer relies on IP-based protection to prevent brute-force TOTP attacks.

Ente’s backend infrastructure hosted behind Cloudflare currently leverages IP whitelisting to
ensure that only Cloudflare-origin traffic is allowed. However, this setup can be bypassed via
Cloudflare Spectrum, allowing an attacker to bypass any security rules configured on the
Cloudflare WAF, as well as override the CF-Connecting-IP header to spoof source IP
address. This would also circumvent a number of other security measures provided by Ente,
including rate limiting that serves to prevent 2FA TOTP brute force attacks.

! https://www.w3.org/TR/webauthn-2/#sctn-cryptographic-challenges

Cure53, Berlin - Oct 30, 25 5/20

https://cure53.de/
https://www.w3.org/TR/webauthn-2/#sctn-cryptographic-challenges
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

To resolve this vulnerability, Cure53 recommends enabling per-hostname authenticated
origin pulls (MTLS) between Cloudflare? and the backend.

ENT-02-003 WP2: Client IP spoofing for self-hosted instances (.)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Generally speaking, Ente assumes that all self-hosted instances are hosted behind
Cloudflare, since the CF-Connecting-IP header is leveraged to determine the client's IP
address. In light of this, self-hosted Ente instances that do not utilize Cloudflare are hence
vulnerable to client IP spoofing attacks if an attacker sets the CF-Connecting-IP header
themselves. Similarly to ENT-02-002, this exposes self-hosted Ente instances to brute force
attacks for TOTP 2FA.

Affected file:
server/pkg/utils/network/network.go

Affected code:
func GetClientIP(c *gin.Context) string {
ip := c.GetHeader("CF-Connecting-IP")
if ip == "" {
ip = c.ClientIP()
}

return ip

To resolve this vulnerability, Cure53 recommends forcing all self-hosting Ente users to
specify their reverse proxy setup. In addition, Ente should consider applying the
standardized X-Forwarded-For header for compatibility with a wide range of reverse proxies,
rather than parsing CF-Connecting-IP.

ENT-02-005 WP3: Email boundary injection in report abuse endpoint (|)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

When sending emails using SMTP, Ente manually generates emails using basic string
interpolation and a static email MIME boundary value. In the event that email bodies include
user input, an attacker can inject a boundary value and additional attachments to the sent
emails. This behavior enables phishing techniques by adding malicious PDFs or other
attachments to an abuse report email.

2 https://developers.cloudflare.com/ssl/origin-configuration/authenticated-origin-pull/set-up/per-hostname/

Cure53, Berlin - Oct 30, 25 6/20

https://cure53.de/
https://developers.cloudflare.com/ssl/origin-configuration/authenticated-origin-pull/set-up/per-hostname/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Affected file:
server/pkg/utils/email/email.go

Affected code:
func sendviaSMTP(toEmails []string, fromName string, fromEmail string,
subject string, htmlBody string, inlineImages []map[string]interface{})

error {

[...]

header := "From: " + fromName + " <" + fromEmail + ">\n" +
"To: " + emailAddresses + "\n" +
"Subject: " + subject + "\n" +
"MIME-Version: 1.0\n" +
"Content-Type: multipart/related; boundary=boundary\n\n" +
"--boundary\n"

htmlContent := "Content-Type: text/html; charset=us-ascii\n\n" +

htmlBody + "\n"

emailMessage = header + htmlContent

PoC:

curl -v \
https://api.ente.io/public-collection/report-abuse \
-H "x-auth-access-token: <album access token>" \

--json '{
"url": "https://example.com",
"reason": "MALICIOUS_CONTENT",
"details": {
"fullName": "CURE53 TEST",
"email": "larry@volt.cure53.de",

"signature": "CURE53 TEST",

"comment": "\n--boundary\nContent-Type: text/html\n\nCURE53TEST\n",

"onBehalfOf": "CURE53 TEST",

"jobTitle": "CURE53 TEST",

"address": {
"street": "CURE53 TEST",
"city": "CURE53 TEST",
"state": "CURE53 TEST",
"postalCode": "CURE53 TEST",
"country": "CURE53 TEST",
"phone": "CURE53 TEST"

}

i3

To resolve this vulnerability, Cure53 recommends utilizing an appropriate library to generate

MIME emails, rather than string interpolation. Alternatively, a cryptographically secure
random boundary could be generated to remediate this specific flaw.

Cure53, Berlin - Oct 30, 25 7120

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

ENT-02-007 OOS: Full read SSRF in Uploader Worker (High)

Fix note: This issue was promptly mitigated by the Ente team during the testing phase. The
fix was verified by Cure53 and the problem no longer exists.

During the assessment, Cure53 identified a Server-Side Request Forgery (SSRF)
vulnerability in the Uploader Worker used via https.//web.ente.io/ to upload user files. The
handlePOSTOrPUT function reads the UPLOAD-URL header directly from the incoming
request and passes it for fetching without any validation or restriction. As such, an adversary
can issue arbitrary HTTP requests from the server's network context and read full
responses, leading to a full read SSRF inside the worker.

Affected file:
infra/workers/uploader/src/index.ts

Affected code:
const handlePOSTOrPUT = async (request: Request) => {

[...]
const uploadURL = request.headers.get("UPLOAD-URL");
let response: Response;
switch (url.pathname) {
case "/file-upload":
response = await fetch(uploadURL, {
[...]

case "/multipart-upload":
response = await fetch(uploadURL

cURL command:

curl -i -X POST 'https://uploader.ente.io/file-upload' \
-H 'Upload-Url: https://cure53.de' \
-H 'Content-Length: 0'

To resolve this vulnerability, Cure53 recommends enforcing strict allow-listing of upload URL
domains and validating the UPLOAD-URL header prior to performing the request.

ENT-02-008 WP2: TOTP authentication vulnerable to code reuse (Low)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Cure53 verified that the Two-Factor Authentication (2FA) implementation in Ente’s server
stack fails to track or prevent the reuse of Time-based One-Time Password (TOTP) codes.
Once a valid TOTP code is generated, it can be utilized multiple times within its validity
window.

Cure53, Berlin - Oct 30, 25 8/20

https://web.ente.io/
https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

The vulnerable code in VerifyTwoFactor() and EnableTwoFactor() validates the TOTP code;
however, the implementation never records that the code has been utilized.

Affected file:
server/pkg/controller/user/twofactor.go

Affected code:
// server/pkg/controller/user/twofactor.go (lines 96-99)
valid := totp.validate(otp, secret)
if tvalid {

return ente.TwoFactorAuthorizationResponse{},
stacktrace.Propagate(ente.ErrIncorrectTOTP, "")

}

// No tracking of used codes - same OTP can be validated multiple times

// Similarly in EnableTwoFactor():
for index, encryptedSecret := range encryptedSecrets {
secret, err := crypto.Decrypt(encryptedSecret.Cipher,
c.SecretEncryptionKey, encryptedSecret.Nonce)
if err = nil {
return stacktrace.Propagate(err, "")

}

valid = totp.Vvalidate(request.Code, secret)
if valid {
// No tracking - same code can enable multiple 2FA setups

A threat actor that intercepts or observes a valid TOTP code can reuse it multiple times
within the validity window, enabling several attack scenarios:

* Man-in-the-Middle replay attack: An attacker intercepting network traffic can
capture valid TOTP code and leverage it to authenticate prior to expiration, even if
the legitimate user has already used it.

* Race condition exploitation: An attacker can issue multiple parallel authentication
requests using the same intercepted TOTP code, potentially bypassing other
security controls.

To resolve this vulnerability, Cure53 advises implementing TOTP code tracking, thus
ensuring that each code can only be used once. This can be achieved by storing code in a
Redis cache structure or similar entity. Alternatively, other database-level tracking
mechanisms can be employed for this purpose.

Cure53, Berlin - Oct 30, 25 9/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

ENT-02-012 WP3: Stored XSS on files.ente.io allows phishing ATO (High)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Cure53 noticed that the Content-Type header remains unsigned when signing S3 URLSs for
file uploads. As a result, an attacker could upload a text/html document that leads to XSS
when served using files.ente.io. This can subsequently be escalated to a phishing account
takeover (even if a user enables Passkey 2FA), since accounts.ente.io/passkeys/verify
allows redirects back to any *.ente.io. In combination, these factors permit an adversary to
serve a phishing page on files.ente.io for the purpose of obtaining the victim’s password,
then bypass passkey 2FA using the redirect for a full account takeover.

Affected file:
server/pkg/controller/file.go

Affected code:
func (c *FileController) getObjectURL(s3Client *s3.S3, dc string, bucket
*string, objectKey string) (ente.UploadURL, error) {

r, _ := s3Client.PutObjectRequest(&s3.PutObjectInput{
Bucket: bucket,
Key: &objectKey,

})

url, err := r.Presign(PreSignedRequestValidityDuration)

Steps to reproduce:
1. Create an Ente account and enable Passkey 2FA.
2. Upload an image to Ente, noting the S3 pre-signed URL and fileID.
3. Create an HTML file with the following content and save it:

Content:
<script>alert(location.href)</script>

4. Run the following command:

Command:
curl <s3 url> --upload-file <html file> -H 'Content-Type: text/html’'

5. Attempt to log in using another browser without an active Ente session.
Proceed to the Passkey authentication step.
7. Replace the redirect query parameter with the following value:

o

Parameter replacement:
https://files.ente.io/?fileID=<fileId>&token=<ente auth token>

Cure53, Berlin - Oct 30, 25 10/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

8. Verify that an alert box appears after completing Passkey authentication, which
includes the account’s encrypted master/recovery keys.

To resolve this vulnerability, Cure53 recommends signing all S3 upload URLs with a
Content-Type header such as application/octet-stream. In addition, a similar header should
be present when serving user-generated content. Lastly, a stricter allow-list for the redirect
query parameter during Passkey authentication should be enforced, rather than permitting
any *.ente.io subdomain.

ENT-02-013 WP3: Storage limit bypass via reuploading (i)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

The observation was made that Ente generates S3-compatible pre-signed upload links for
user photo uploads. After the user uploads the data to the storage, a request is issued to
/files with the photo’s metadata. Ente verifies that the uploaded file comprises the specified
size and the metadata is subsequently stored, which is the method by which a user's
storage quota is calculated.

However, a user can overwrite the uploaded file with a greater volume of data after this
process, which would not be calculated as part of the storage quota. Accordingly, users can
utilize Ente as an unlimited file storage service, even with a free account.

Steps to reproduce:
1. Upload an image to Ente and note the pre-signed URL.
2. Run the following command:

Command:
curl <s3 url> --upload-file <bigger file>

3. Note that viewing the images is no longer possible, but one can retrieve the raw
data via Chrome DevTools or a similar request inspector.

4. Confirm that the user’s Ente storage usage status has not altered.

To resolve this vulnerability, Cure53 recommends determining the size of the upload prior to
uploading it, then signing the content-length header of the S3 upload URL.

Cure53, Berlin - Oct 30, 25 11/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

ENT-02-014 OOS: XSS on accounts.ente.io via Passkey recovery (High)

Fix note: This issue was promptly mitigated by the Ente team during the testing phase. The
fix was verified by Cure53 and the problem no longer exists.

In general, Ente’s Passkey authentication flow adopts a URL query parameter to ascertain
the user’s redirection location for recovery. However, the URL is never validated when the
user clicks the Recover two-factor button. As such, an attacker could utilize a javascript: URI
to run arbitrary JS when the button is clicked.

Affected file:
web/apps/accounts/src/pages/passkeys/verify.tsx

Affected code:
const handleRecover = (() => {
const searchParams = new URLSearchParams(window. location.search);
const recover = nullToUndefined(searchParams.get("recover"));
if (!'recover) {
// [Note: Conditional passkey recover option on accounts]
//
[...]

return undefined;

}

return () => redirectToPasskeyRecoverPage(new URL(recover));

HNO;

PoC:

https.//accounts.ente.io/passkeys/verify?
clientPackage=io.ente.photos.web&passkeySessionlD=fake&redirect=https%3A%2F
% 2Fweb.ente.io¥2Fpasskeys % 2Ffinish&recover=javascript:alert(origin)

To resolve this vulnerability, Cure53 recommends validating that the redirect constitutes an
HTTPS URL leading to a valid Ente recovery page. For additional defense-in-depth, the dev
team should incorporate a Content-Security-Policy (CSP) for all Ente web applications.

ENT-02-015 WP2: SRP fake session mechanism enables user enum (High)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

The Secure Remote Password (SRP) authentication implementation attempts to prevent
user enumeration by returning fake session data for non-existent users via the
fCreateSession() function. However, this protection mechanism is flawed, rendering user
enumeration attempts more viable than no protection whatsoever.

Cure53, Berlin - Oct 30, 25 12/20

https://accounts.ente.io/passkeys/verify?clientPackage=io.ente.photos.web&passkeySessionID=fake&redirect=https%3A%2F%2Fweb.ente.io%2Fpasskeys%2Ffinish&recover=javascript:alert(origin)
https://accounts.ente.io/passkeys/verify?clientPackage=io.ente.photos.web&passkeySessionID=fake&redirect=https%3A%2F%2Fweb.ente.io%2Fpasskeys%2Ffinish&recover=javascript:alert(origin)
https://accounts.ente.io/passkeys/verify?clientPackage=io.ente.photos.web&passkeySessionID=fake&redirect=https%3A%2F%2Fweb.ente.io%2Fpasskeys%2Ffinish&recover=javascript:alert(origin)
https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Affected file:
server/pkg/controller/user/srp.go

Affected code:
func (c *UserController) CreateSrpSession(context *gin.Context, req
ente.CreateSRPSessionRequest) (*ente.CreateSRPSessionResponse, error) {

srpAuthEntity, err :=
c.UserAuthRepo.GetSRPAuthEntityBySRPUserID(context, req.SRPUserID)

if err I= nil {

if errors.Is(err, sql.ErrNoRows) {
return fCreateSession(req.SRPUserID.String(), req.SRPA) //

Returns fake session

ieturn nil, stacktrace.Propagate(err, "failed to get srp auth
entity")
}
// ... real session creation
}
[...]

// server/pkg/controller/user/srp.go (lines 327-342)
func fCreateSession(srpUserID string, srpA string)
(*ente.CreateSRPSessionResponse, error) {

srpABytes := convertStringToBytes(srpA)

[...]

srpBBytes := make([]byte, 512)

_, err := rand.Read(srpBBytes)

if err I= nil {

return nil, stacktrace.Propagate(err, "failed to generate random

bytes")

}

return &ente.CreateSRPSessionResponse{
SessionID: uuid.New(), // NOT STORED IN DATABASE

SRPB: convertBytesToString(srpBBytes[:512]), // RANDOM, NOT
VALID SRP
}, nil

The fake session mechanism is affected by three fundamental vulnerabilities that enable
reliable user enumeration. Firstly, fake session IDs are never stored in the database. When
a client attempts to verify the session, the database lookup fails with sql.ErrNoRows,
immediately revealing that the user does not exist. Secondly, timing differences are
detectable. Real user session creation takes variable time (estimated at 50-100ms), while
fake user session creation requires a consistent 20ms due to a fixed 20ms sleep delay and

Cure53, Berlin - Oct 30, 25 13/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

minimal random variation, which renders detection trivial. Thirdly, the take SRPB value
consists of 512 bytes of random data, rather than a valid SRP public ephemeral value that
should be computed as B = (k*v + g°) mod n according to the SRP protocol. A
cryptographically sophisticated attacker could detect this by analyzing the mathematical
properties of the returned values.

An adversary can enumerate all user email addresses in the system with 100% accuracy
using timing analysis to distinguish real users (50-100ms response time) from fake users
(20-22ms). This can be achieved by attempting to verify the session, whereby fake sessions
return database errors while real sessions return authentication errors, or via statistical
analysis exploiting the low variance in fake responses versus high variance in real
responses.

Plausible ramifications of a successful exploit include targeted phishing, since attackers will
know with certainty which email addresses use Ente; password spraying focused only on
valid accounts; privacy violations by revealing user account existence; competitive
intelligence allowing competitors to identify Ente's customer base; and correlation attacks
that cross-reference with other data breaches.

To resolve this vulnerability, Cure53 advises improving the fake session mechanism or
removing it entirely, as the half-broken protection may actually incur greater risk than no
protection at all. Ideally, fake sessions should be stored in the database with a deterministic
fake verifier generated via the srpUserID, therefore ensuring consistency across requests.
Alternatively, for simpler implementations whereby perfect enumeration protection is non-
critical, the fake session logic should be removed and consistent error messages returned
for all authentication failures.

Cure53, Berlin - Oct 30, 25 14/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

ENT-02-004 WP2: OTTs for specific operations valid for all (Info)

Cure53 confirmed that Ente’s One Time Tokens (OTTs) sent by email are only ever
associated with the receiving email address. As a result, an OTT sent for registration
validation and another sent for email change user verification are both valid for either
operation, even if the two operations are associated with different sessions. When sending
an OTT email, the associated correspondence specifies its intended purpose, which may
mislead users into believing that the token is limited to one purpose only.

To resolve this issue, Cure53 recommends associating OTTs with specific sessions and
operations, ensuring that the server enforces the intended OTT purpose.

ENT-02-006 WP2: Unexploitable email header injection (High)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Similarly to the flaw outlined in ticket ENT-02-005, Cure53 noticed that the subject header
line for sending emails is generated using string interpolation. If an injection point exists that
allows an attacker to specify an unconstrained value that is eventually added to the subject
header, they may be able to inject arbitrary content and present any layout of their choosing.

While Cure53 did not locate any corresponding injection points during this audit, they may
be inadvertently integrated in the future and hence should be monitored.

Affected file:
server/pkg/utils/email/email.go

Affected code:
func sendvViaSMTP(toEmails []string, fromName string, fromEmail string,
subject string, htmlBody string, inlineImages []map[string]interface{})

error {
[...]
header := "From: " + fromName + " <" + fromEmail + ">\n" +
"To: " + emailAddresses + "\n" +
"Subject: " + subject + "\n" +

"MIME-Version: 1.0\n" +
"Content-Type: multipart/related; boundary=boundary\n\n" +

Cure53, Berlin - Oct 30, 25 15/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

"--boundary\n"

htmlContent := "Content-Type: text/html; charset=us-ascii\n\n" +
htmlBody + "\n"

emailMessage = header + htmlContent

To resolve this issue, Cure53 recommends leveraging a library for MIME email generation,
rather than appending strings.

ENT-02-009 OOS: Potential RCE in desktop application (Critical)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Cure53 noticed that shell.openExternal is utilized in the Ente desktop application to open

external links in a browser, which is inherently unsafe since shell.openExternal can lead to
RCE in certain cases.

This target was Out-of-Scope (OOS) for this pentest. As a result, the test team refrained
from investigating the vector’s exploitation conditions.

Affected file:
desktop/src/main.ts

Affected code:
const allowExternalLinks = (webContents: WebContents) =>
[...]
webContents.setWindowOpenHandler (({ url }) => {
if ('url.startswith(rendererURL)) {
[...]
void shell.openExternal(url);
return { action: "deny" };
} else {
return { action: "allow" };
}
1)

To resolve this issue, Cure53 recommends ensuring that all external links constitute specific
trusted protocols prior to opening them, such as HTTPS.

Cure53, Berlin - Oct 30, 25 16/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

ENT-02-010 WP2: Non-constant-time comparison for Passkey recovery (Low)

Fix Note: This issue has been fixed by the Ente team and verified by Cure53 to be working
as expected. The described issue no longer exists.

Cure53 observed that the != operator is employed when determining if a user’'s input
recovery key matches the entity in the database for Passkey recovery. However, this is not a
constant-time comparison. In specific circumstances, an attacker may be able to leverage
this information as a side-channel to brute force for the user's recovery key. Albeit,
exploitation is considered highly unlikely at present.

Affected file:
server/pkg/repo/two_factor_recovery/repository.go

Affected code:

// ValidatePasskeyRecoverySecret checks if the passkey skip secret is valid
for a user

func (r *Repository) ValidatePasskeyRecoverySecret(userID 1int64, secret
string) (bool, error) {

[...]

if secret != serverSkipSecretKey {
logrus.wWarn("invalid passkey skip secret")
return false, nil

}

return true, nil

To resolve this issue, Cure53 recommends employing a constant-time comparison function
that nullifies comparison side-channel attacks.

ENT-02-011 WP2: Disabling 2FA does not require additional auth (Info)

During the analysis, Cure53 confirmed that additional authentication measures are not
required when disabling/altering TOTP 2FA or adding new Passkeys, which is suboptimal
from a security viewpoint.

To resolve this issue, Cure53 recommends enforcing additional verification when altering

critical account security settings. This revised approach will help to guarantee that the
operation is authorized by the user in the question, rather than a malicious party.

Cure53, Berlin - Oct 30, 25 17/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Conclusions

This penetration test and source code audit of the Ente platform confirmed the presence of a
range of security vulnerabilities spanning the authentication mechanisms, access controls,
email handling, file operations, and infrastructure components. While the platform offers a
solid foundation characterized by optimal server-side ACL enforcement and generally
secure coding practices, several High-severity pitfalls were identified that require immediate
attention.

Cure53 extensively probed the Passkey 2FA authentication and recovery protocols, yielding
two distinct findings in this area. The first confirms that the Passkey challenge-response
system used by Ente is vulnerable to challenge reuse/replay attacks (ENT-02-001), while
the second denotes an OOS XSS vulnerability in the Passkey recovery mechanism (ENT-
02-014).

While considering plausible attacks against TOTP 2FA systems, Cure53 determined that
Ente's protection against brute force attacks is subpar, as it relies on spoofable IP addresses
(ENT-02-002 and ENT-02-003). The dev team must ensure that request-related IP address
information is obtained from trusted sources.

Following a comprehensive evaluation of the various sharing features, Cure53 noted the
viability of a MIME email boundary injection attack when sending emails for abuse reported
received on a shared collection (ENT-02-005). In addition, an unexploitable header injection
issue was noted (ENT-02-006). Both of these drawbacks originate from the same root
cause; the outgoing email generation process should be augmented to ensure that injection
attacks are definitively nullified.

Cure53’s review of the image upload process and S3-compatible upload mechanism yielded
two defects emanating from lax header signing (ENT-02-013 and ENT-02-012). Greater
strictness should be applied when generating user-employed pre-signed URLS.

A detailed examination of Ente's authentication and authorization mechanisms revealed
several security concerns in the 2FA implementation. The TOTP authentication system is
susceptible to code reuse (ENT-02-008), permitting multiple usage of the same TOTP within
its validity window. This weakness could enable replay attacks and race condition
exploitation if an attacker intercepts valid TOTP codes.

The SRP authentication construct attempts to prevent user enumeration via a fake session
mechanism; however, this safeguard is fundamentally flawed (ENT-02-015). The
fCreateSession() function generates fake session data for non-existent users, yet the
implementation remains easily detectable via multiple vectors.

Cure53, Berlin - Oct 30, 25 18/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Fake session IDs are never stored in the database; timing differences are consistent and
measurable (20ms for fake vs 50-100ms for real); and the fake SRPB values are
cryptographically invalid. Accordingly, user enumeration is increasingly reliable in this setup
compared with no protection mechanism at all.

A cryptographic timing side-channel was identified in the Passkey recovery mechanism
(ENT-02-010), whereby non-constant-time comparison is adopted for recovery key
validation. While exploitation is unlikely in practice, this represents a deviation from security
best practices concerning sensitive cryptographic material handling.

The platform generally adheres to contemporary security standards. Session management
depends on the X-Auth-Token header, which is set and validated by TokenAuthMiddleware
before being passed to downstream handlers. The critical nature of this authentication
mechanism mandated a thorough assessment. The validation process initiates by ensuring
that the provided JWT holds a valid signature; thereafter, the corresponding userld is
retrieved from UserAuthRepo and securely configured in the X-Auth-User-ID header.

The GetUserID method responsible for reading the header was explored for potential
discrepancies. The .Get and .Set methods of the HTTP header are case-insensitive,
eliminating the possibility of injecting a duplicate header with an alternate casing. Cure53
attempted to smuggle the header by adding spaces before and after the header name,
although these efforts were blocked by the HTTP server prior to reaching the middleware.

The password lock feature enforces access control via a combination of URL whitelisting
and JWT validation. The validatePassword method sanitizes the request path with a
urlSanitizer function, which includes additional checks such as maintaining a list of all valid
endpoints and verifying that the resolved user-provided path matches one of these
endpoints. This setup restricts attackers from applying crafted paths to bypass the whitelist.
Requests to any unregistered paths are redirected to /unknown-api, ensuring that only
approved endpoints are accessible.

The cross-platform email handling procedures were thoroughly reviewed for consistency and
security. All user-provided emails are normalized by converting to lowercase and trimming
spaces prior to further processing. When retrieving user IDs,
c.UserRepo.GetUserIDWithEmail is called with the normalized email, while a hash is
generated using *crypto.GetHash* to safely match against stored email variants. Cure53
tested this construct using emails with uppercase letters, spaces, and Unicode variants. The
results confirmed that all email variations are consistently normalized, with no discrepancies
found that could allow account takeover or duplication.

The external connector handling was reviewed for security concerns, specifically regarding
the mailing_list controller and doListActionZoho method. Email input is ideally escaped to
prevent parameter pollution in the backend Zoho API call. The action parameter that
determines the API path is hardcoded, limiting the scope of potential manipulation.

Cure53, Berlin - Oct 30, 25 19/20

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Other external connectors such as Wasabi and Listmonk were also vetted, verifying that the
input is handled safely.

Elsewhere, an SSRF vector was located in the Uploader Worker, enabling arbitrary HTTP
requests from the server's context via the UPLOAD-URL header (ENT-02-007). Positively,
this shortcoming was promptly mitigated by the Ente team during the testing phase.

In conclusion, Cure53 can confirm that Ente's server-side ACLs are effective, with no major
findings stemming from suboptimal ACL enforcement. The inspected functionalities assert
that users cannot access alternative user data without authorization. While the Ente
maintainers evidently possess ample understanding of modern authentication protocols, the
implementation details reveal weaknesses that could be exploited by sophisticated
attackers. The fake session mechanism in particular requires significant modification, as the
current premise may provide attackers with reliable enumeration capabilities over a simpler
error-based approach.

A multitude of findings were either partially or fully OOS for this pentest. In light of this,
supplemental reviews of these respective components would prove beneficial. Ente's overall
security posture can be significantly strengthened by implementing performant TOTP code
tracking; constant-time comparisons for all security-critical operations; stricter header
signing for S3 uploads; and email generation upgrades. Despite the detected flaws, the Ente
platform reflects the internal development team’s security diligence, underscored by the swift
amelioration endeavors and generally well-architected framework.

This security evaluation of the Ente platform resulted in the identification of fifteen total
security pitfalls, comprising ten confirmed vulnerabilities and five general weaknesses. The
scope of the findings ranged from substantial flaws such as SSRF and XSS, to lower impact
implementation concerns within authentication mechanisms. The Ente team exhibited a high
degree of security awareness and responsive remediation capabilities, successfully fixing
twelve of the fifteen issues, including all Critical- and High-severity issues prior to the
finalization of this report.

The underlying architecture demonstrates solid security fundamentals, especially regarding
access control enforcement and authorization logic. However, Ente should strategically
prioritize hardening authentication flows, implementing rigorous input validation for
interactions with external services, and adopting secure-by-default practices for
cryptographic operations.

Cure53 would like to thank Vishnu Mohandas, Manav Rathi, and Neeraj Gupta from the

Ente team for their excellent project coordination, support, and assistance, both before and
during this assignment.

Cure53, Berlin - Oct 30, 25 20/20

https://cure53.de/
mailto:mario@cure53.de

	Introduction
	Scope
	Identified Vulnerabilities
	ENT-02-001 WP2: Weak replay attack protection on WebAuthn (Medium)
	ENT-02-002 WP3: Cloudflare bypass via Cloudflare Spectrum (Medium)
	ENT-02-003 WP2: Client IP spoofing for self-hosted instances (Medium)
	ENT-02-005 WP3: Email boundary injection in report abuse endpoint (Medium)
	ENT-02-007 OOS: Full read SSRF in Uploader Worker (High)
	ENT-02-008 WP2: TOTP authentication vulnerable to code reuse (Low)
	ENT-02-012 WP3: Stored XSS on files.ente.io allows phishing ATO (High)
	ENT-02-013 WP3: Storage limit bypass via reuploading (Medium)
	ENT-02-014 OOS: XSS on accounts.ente.io via Passkey recovery (High)
	ENT-02-015 WP2: SRP fake session mechanism enables user enum (High)

	Miscellaneous Issues
	ENT-02-004 WP2: OTTs for specific operations valid for all (Info)
	ENT-02-006 WP2: Unexploitable email header injection (High)
	ENT-02-009 OOS: Potential RCE in desktop application (Critical)
	ENT-02-010 WP2: Non-constant-time comparison for Passkey recovery (Low)
	ENT-02-011 WP2: Disabling 2FA does not require additional auth (Info)

	Conclusions

